
/

t--~ Ct 1-••• -1 E t·-·1 B E F.:

Next meeting: Friday, November 8, 7:30 PM

We will hold elections at this meeting.

Be sure to notice the new meeting
place. Map on bacK cover.

December meeting: Friday, December 13

Pr·esident 487-2627 Bob Floyd
Bruce Haug .
Fr·ank Haug
,Jim Schu-1 :z

Vice-Pres 774-6226
Disk Lib. 774-6226
Paper/Ed. Lib. 537-5442

SPACE/TAIG Bulletin

Publ i ·:-hed b::,' the :::;t. Pa1Jl
Atari Computer Enthusiasts
(SPACE), an independent
organization with no business
-:1.-f-fili.:1.tion 1_.o • .1ith Atar·i
Incorporated. Permission is
granted to any similar
organization with which SPACE
exchanges newsletters to
r·epr· int m-::1. ter· i .:11 in th i ·=·
newsletter. We do, however,
ask that credit be to the
authors and to SPACE.
Opinions expressed are those
o-f the article authors and do
not necessari]y reflect the
views o-f SPACE, club
officers, members, or Atari
Inc.

Jon Nelson Editor 484-9027
Max Feuer. Treasurer 483-3895
Bruce Haug Cass Lib. 774-6226
Steve Pauley Secretar; 560-2917

Board ... 473-2897

IN THIS ISSUE:

PART 11 (final) OF CHRIS
COPLAND ✓ s DOS TUTORIAL

PART V OF CHRIS CRAWFORD ✓ s

ASSEMBLY LANGUAGE COURSE

NEWS FROM THE V.P. AND PRES.

PLUS ALL THE REGULAR
MONTHLY COLUMNS.

BYTES FRltl THE PRES,
by Bob Floyd

Who was that 11asked nan? - I wasn't sure whether the last
meeting was "Shootout at the OK corral' or a Jack Tramiel
testimonial, I think the last meeting turned out rather
poorly, We didn't get to see the prooiised demos from ATARI
rep Chari ie Devine and he didn-'t answer any of our
pre-selected questions. It was obvious that Char] ie did not
intend to demo anything, including the Casio keyboard he
prmised only 2 days before the meeting to bring (we lucked
out and had one there anyway), Don't figure on our inviting
him back. Also, the ambushers of the rep could have waited
until after the meeting to spring their trap. (1-'m not sure
this would have worked anyway since Chari ie beat a hasty
retreat). I'm glad that meeting is over.

Elections this month - We will hatie elections this
meeting, Look for the separate article by the nominating
connittee on who is running for what office.

New meeting rom - Be sure to come to our new meeting rom
this month. We are nearby the old location, only 3 blocks
away. The meetings are in the Falcon Heights Connunity
Center at 2077 West Larpenteur (near Gortner). The police
and fire station are in the same building and a Hewlett
Packardnffic~ is next doo~. See the map elsewhere in -the
newsletter. Hopefully this a meeting roan we can stick with
for a while.

Heeting agenda - We will try not to spend too much time
talking this month and spend more time on demos and swap
meet, We won't spend much time on ST stuff since sine
decision regarding mini-groups or new group for ST is
imminent. (Bruce Haug and myself are having discussions

with others concerned and will figure something out soon.
The club will remain loyal to the 400/800/XL/XE series).

!Map Heet - There will be a swap meet this month after the
meeting, This is for buying and selling of used software
and hardl!lare. If you are selling software, you must have
the original documentation and software - no pirating!

NICELIST - Remember the program 1 ister we offered to the
club a few months ago? Apparantly ATARI I ikes NICELIST
enough that they nCM use it for program I istings in the
"ATARI Explorer". They called me up to thank me for the
program and have prmised to mention SPACE in the near
future.

Bye-Bye - This is my last 'Bytes•, so I just wanted you
all to knCM that I've enjoyed being "the pres• and plan to
stay active in the club. I think that the club has done
well in the last 16 months and I'm sure this trend will
continue with the new officers we will be electing. Thanks
to all who helped along the way'

ST's WAAT TO DO
BRUCE AAUG V.P.

\
All we hear is ST this, and ST that! Well it's about

time all the ST CMners get together and form a SPACE 520ST
SIG, that is a part of SPACE. The SPACE officers are willing
to help get a group started, but not run it. The group can
decide for itself what they want to do, such as: meet
before, or during the SPACE meeting, like the BEGI~ERS
GROUP, or on another night at sane other place, The SPACE
520ST SIG would have input into the main SPACE meeting, have
access to the newsletter to print ST NEWS, and have money to
start a ST disk of the month. I'an sure all the details can
be worked out with the newly elected officers of SPACE.

By doing the ST as a Special Interest Group (SIG) the
members of SPACE can have the best of two cmputing worlds,
The EIGHT Bit, and THE SIXTEEN bit, With both included in
one membership fee, and one newsletter,

The rest of us can get back to the world of the EIGHT
BIT machine (the older and newer Atari's) and enjoy the
meeting without it being devoted to ST NEWS. This does not
mean we will not hear about the ST, but the meeting will be
more old Atari than the new ST.

Rumor has it that User Friendly has already started a
520 ST group, cme to the meeting and find out whats going
on. I hope there will be enough interested ST owners at the
meeting to get something started, in +act they may have ~.
lot of things to bring to the SWAPHEET, so everyone should
c011e. SEE YOU FRIDAY.

October Meeting Hinutes
by Joanne Floyd

The last SPACE meeting was held Friday, October 11,
with 86 people in attendance. In discussing the latest news
fron ATARI, Bob Floyd cited an Infoworld article which
reported that the GEM operating system in the 520ST will be
altered to avoid lawsuits with Apple. In the president's
report, Bob discussed reasons for the move to the new
meeting roon at Falcon Heights C011111unity Center. In the
vice president's report, Bruce Haug reminded members that
•c• language disks are available fran the club for i4; he
also recommended Going Frm Basic to C and The C
Progranning Guide as good resources to buy to learn the
language. (Both books are available fran the paper
library.) Max Feuer, the treasurer, reported that the club
has a bank balance of $960.

Dick Johnson, the president of TAIG, reported that a
130XE has been purchased for the BBS, and that the SYSOP is
trying to structure the board to allCM higher access to TAIG
and SPACE members. In new business, the nminatin~
connittee announced n011inations for the offices of
president, secretary, and treasurer and Jim Schulz was
nminated frcn the floor for the office of vice president.
Bob Floyd mentioned that a newsletter editor would be needed

//

;;

3

replace Jon Nelson, (He ,ot,d that Sf)ecial th .. ks should - -
be given to Jon for the great job he's done with the
newsletter.)

.,.J At the end of the meeting, Charlie Devine, the local
ATARI rep, spoke to the group. His talk was long on
unconvincing accolades to Jack Tramiel and short on useful
demonstrations of new products. He did mention
(unofficially) that there will be no new 8-bit line from
ATARI since they consider the fu-: .• ~~ of ccnputers to be in
the 32-bit line. He predicted that the operating system
upgrade for the the 520ST would be available within 60 days
and that IBM ccnpatabil ity would be available for under $300
within 4 or 5 months. At the end of his talk, Charlie asked
for ccnplaints about ATARI but was not very helpful or
informative in dealing with the complaints.

D.O.H. News
by: Frank Haug

Well this month's disk may not be the fullest but I'm
glad that ALL of the programs WERE member donations. (I knew
you guys could do it, you just had to roll up your sleeves
and dig in.) Thanks, but you other people don't get off the
hook so eas i 1 y.

Speaking of donations .•. I have an idea that might work
~ut nicely for us. I'm sure sme of you own some sort of

graphics program for drawing pictures. Now sme of these
pictures are pretty good. If enough people donate pictures
to make it worth selling, a disk containing these files
could be sold as a separate disk. On that same thought those
of you who have Electronic Arts' Pinball Construction Set
could donate the games you made for another separate disk
(The Games themselves not files loaded by it for its use)
This will all depend on your support. If you're interested
get in touch with me at the meeting.

Besides the Dltl we will be selling a separate disk for
$4,00. This disk is a S.A.H. tutorial. You must have S.A.M.
in order to use it. (For those of you who never heard of
S.A.H., it stands for Software Animated Mouth. It is a
speech synthesizer that doesn't require extra har!Mare,)

Now on with the programs on the November 1985 D.O.M.
!.EDIT.INS - Run this program for the instructions to

EDIT.
2.EDIT - A member-written Screen editor,
3.SltlO.BAS - A text simulation of a Sumo-wrestling

match.
4.DRAG.BAS - A text simulation of a drag race.
5.SCROLL - ENTER program and type RI.ti (Note your

~rogrm can't use line O or lines frm 32710 on) to allow
~ou to scroll up and down the listing via - or=.

6.PINBALL.INS - Run this program for the instructions
to pinball.

7.PINBALL.OBJ - Will NOT show up on menu, must be
loaded without basic frm DOS. RI.ti PINBALL.INS first.

NOTES FR!tl THE EDITOR
by Jonathan Nelson

I would like to thank all of you, especially the other
officers, for all the support you have provided in the last
sixteen months. You have provided each other with better,
more interesting news. I hope you keep on supporting the
editors-to-cme as much as you did me; it will make his job
easier and your newsletter more exciting. So long for now.

The Ed

Nltllt-¥1TI~S COMMITTEE
REPORT

By Sherm Erickson
and Glen Kirschenmann

The following people have either been contacted or
turned their names into the Nominations Cmmittee:

Pres. : Bruce Haug
V.P. : Jim Shulz
Secty.: Bob Floyd
Treas.: Bob Siede

Nominations for office will be open before the
Elections begin, so if you did not turn your name into the
Nminations Committee you still have a chance to run for
office. See you at the NEW MEETING PLACE, SEE HAP IN THIS
NEWSLETTER. .

USING DISKS WITH BASIC
<FOR THE CURIOUS ~LY>

By Chris Copeland
PART I I

Last month we learned how to OPEN and CLOSE disk files
and read and write to them. This month we'll look at two
powerful disk commands- NOTE and point. They allow you to
read and write to any place in the same file. If you have a
file opened and say

NOTE #1,SECTOR,BYTE

in a progra11 line, the number of the current sector and byte
being read from or written to will be stored in the
variables SECTOR and BYTE <You can use any variable na11e).

A sector is the basic unit of data on a disk. There are
720 on a DOS 2 disk. Each one holds 125 bytes of data. When
you NOTE #1 1 SECTOR, BYTE you kntM in which sector your
record is and on which byte of that sector it begins.

If you are using DOS 3, your disks have more than 720
sectors. They are grouped in 'blocks".

When you know the sector and byte at which each record
begins, you can then POINT to it if you want to read it
again:

POINT #1, SECTOR, BYTE

-4- 2\
th~t particular record. But once we save the file, our
pointers will be lost. To find them again, we will use
program three. It's that easy, If you keep the values in a table, you

can read each record whenever you want. Let's look at a
program that will NOTE the locations of each record in an
already existing file. Type it in and try it on the file
that we created last month with program two.

5 REM PROG~ 3
10 DIM A$(111),TABLE(10,2):TRAP 100
20 ?'Which file to read";:INPUT FILE$
30 RECORD=1:0PEN #1 14,0,FILEt
40 NOTE #1,SECTOR,BYTE
50 TABLE(RECORD,l)=SECTOR
60 TABLE<RECORD,2)=BYTE
70 INPUT #1,A$:?At
80 RECORD=RECORD+1
90 GOTO 40
100 CLOSE #1:REM END OF FILE

NIM we know the sector and byte locations of each record,
Reading each one will now be a simple matter of looking up
its location in TABLE:

110 TRAP 40000:?"Which record of ";FILE$;' to read";:INPUT
RECORD
120 SECTOR=TABLE<RECORD,1)
130 BYTE=TABLE<RECORD,2)
140 OPEN #1,4,0,FILEt
150 POINT #1,SECTOR,BYTE
150 INPUT At:? At
160 CLOSE #1
170 GOTO 110

Simple! We used a TRAP 40000 to clear the trap to line
100- if something goes wrong, we want to know about it,

Now let's write a program that will:

1> Input stuff from the keyboard
2> Write it to a disk file
3) Re-read and edit any record
4) Edit any record in a file by running a routine like
program 3 to find it and then writing over the old record
using POINT.

To do this we're going to have to use a couple of
tricks, First, in order to make re-reading and editing
individual records easier, we have to ensure that all
records are the same length, If some records were only a few
characters long, we couldn't edit them to be any longer.
Let's use 35 characters, a little less than the width of the
screen.

Instead of INPUTing frm the keyboard, we-'11 write our
own I ittle key-in routine that will demonstrate another use
of the OPEN and CLOSE c01111ands and make the program look
much more professional.

Now that we've got a file that is cmposed of
35-character records, how can we edit it? Well, if we NOTE
the location of the file pointer right before we PRINT each
record to the file, we'll know where to POINT to re-read

For simplicity's sake, we'll just have the user re-ty,.,.
the I ine to be edited instead of using a complicated editihi,.t
routine like a word processor might.

Subroutines:

Lines 100- 140: Decide whether to create a file and then
edit it or to get the pointers for an existing file and edit
that.

Lines 200-260 A fancy 1 ittle key-in routine that decides
what operation to perform and calls the appropriate
subroutine. Time to explain that mysterious I ittle OPEN
statement in line 10. It opens IOCB #1 to the keyboard, so
when we say "GET #1 1 Cttt!AND it puts the ATASCII value of
the key pressed into Cttt!AND. Very useful,

Lines 300- 350: Reads the current file to the screen.
Depending on which flags have been set, it may print the
I ine numners, LPRINT, or just print the I ines.

Lines 600- 680: Edit any record by looking up its location
in the table and printing over it.

Lines 800- 860: Create a file. Uses the subroutine at line
1000.

Lines 1000- 1090: The line- entering routine. This helps
make the program idiot-proof, and prevents the user frm
entering control characters in the Jines, We could just
replace this whole routine with INPUT LINE$ and the progran
would still work, but this is more intersting,

Lines 2000- 2040: Find the pointers for the file.

Now that we have the capability to create, read, and
edit stuff on disk, think of the applications. Just about
anything can be stored permanently on disk- have a game keep
a permanent record of the top 10 high scores- you could
write a gambling simulation that keeps a permanent record of
your bankroll. Or a list of your freinds' phone numbers,,.

10 DIM TABLE<300,2),LINE$(35>,FILE$(20):0PEN #1 1410,"K':POKE
82,0
100 REM*** WHERE TO?***
110 CLOSE #2:POKE 702 164:? "Edit an existing file?1 :6ET
#1,Cttt!AND:? CHRt(CtttlAND)
120 IF CHR$(Cttt!AN0)=1 Y1 THEN ? "Filename:';:INPUT
FILE$:60SUB 2000:6010 200
130 IF CHRt<CM1AN0><) 1N1 THEN GOTO 110
140 GOSUB 800
200 REM*** EDIT THE FILE***
205 REM -GET A Cttt!AND-
210? :? "File: ";FILE$:? '(R)ead (E)dit (L)ist (P)rint
((Duit ":?

/

/,20 POKE 702,64:GET 11,Clltmll
225 IF CHR$(ClltfAND)='Q' THEN RLN

-5-

i30 IF CHR$(ClltfAND)=1 E1 THEN GOSUB 600
~40 IF CHR$(ClltfAND)= 1 R1 THEN GOSUB 300

250 IF CHR$(ClltfAND)= 1 L1 THEN LFLAG=1:GOSUB 300
255 IF CHR$(ClltfAND)= 1 P1 THEN PFLAG=1:GOSUB 300
260 GOTO 210
300 REN -READ FILE TO SCREEN-
310 CLOSE #2:0PEN #2,4,0,FILES:TRAP 350:LNI.H=l
320 IF LFLAG THEN ? LNl.t1; 1 > 1

;: LNI.H=LNl.t1+ 1
330 INPUT #2;LINES:? LINES:IF PFLAG THEN LPRINT LINES
340 GOTO 320
350 LFLAG=O:PFLAG=O:A=O:CLOSE #2:RETURN
600 TRAP 680:? 'Edit which record';:INPUT RECORD
610 CLOSE #2:0PEN #2 14,0,FILES
620 POINT 12,TABLE(RECORD,1),TABLE(RECORD,2):JNPUT
12,LINES:? :? RECORD;">':? LINES
630? 'Re-type line: 1 :FLAG=-1:GOSUB 1000:FLAG=O
640 CLOSE #2:0PEN 12,12,0,FILES
650 POINT 12,TABLE<RECORD,1),TABLE<RECORD,2):?
670? 12;LINES:GOTO 200
680 CLOSE #2:GOTO 200
800 REN*** CREATE FILE***
820? :? :? •create a file':? :? •use what filenarte';:INPUT
FILES:OPEN 12,8,0,FILES:LNI.H=O:? 1 35 characters per line.
I•

I

825? 'Put an 'i' at •.• the start of a new line to end.
The .•••• file will be written to the disk as ..••. you type.•

,,.:,)27 REN PERIODS IN ABINE LINE ARE
828 REN SPACES
830 LNI.H=LNl.t1+1:? :? 'Line 1 ;LNl.t1:COL=O
840 GOSUB 1000:IF DINE THEN RETURN
850 NOTE
B2,SECTOR,BYTE:TABLE<LNl.t1,1)=SECTOR:TABLE<LNl.t1,2)=8YTE
860? 12;LINES:GOTO 830
1000 REN*** TYPE A LINE OF TEXT***
1010 GET 11,A:IF A=l26 ~D COL>O THEN
LINES(COL,COL>="":COL=COL-1:? CHR$(A);:GOTO 1000
1020 IF A=155 THEN GOTO 1070
1030 IF A=ASC(1 i 1

) ~D COL=O THEN DINE=l :RETURN
1040 IF (A)27 ~D A<32) OR (A)124 ~D A<128) OR (A)155 ~D
A{160) OR A>253 THEN? 1 [8UZZERl 1 ;:GOTO 1000
1050 COL=COL+1:LINES<COL,COL>=CHR$(A):? CHR$(A);:IF COL=35
THEN 1070
1060 GOTO 1000
1070 IF COL<>35 THEN FOR LOOP=COL+l TO 35:LINES(LOOP,LOOP>=•
":NEXT LOOP
1080 COL=O:RETURN
1090 IF FLAG=-1 THEN RETURN
2000 REN**** GET FILE POINTERS***
2010 CLOSE #2:0PEN #2,4,0,FILES:COOO=l:TRAP 2040
~~ Nm
12,SECTOR,BYTE:TABLE(C000,1)=SECTOR:TABLE(C000,2>=BYTE
~030 INPUT 12,LINES:COOO=COOO+l:GOTO 2020

~040 RETURN

We are n<M going to expand the model of the 6502 that you
have been using. Until n<M, the 6502 I have described had
nothing more than a status register, program counter, and
accumulator. N<M I am going to reveal the existence of two
new registers in the 6502: the X- and Y-registers.

These two registers are eight-bit registers just like the
accumulator. You can load numbers into them and store them
out just as you can with the accumulator. You cannot do
arithmetic or Boolean operations with them as you can with
the accumulator. But you can do a number of very special
things that greatly increase the p<Mer of the 6502.

Let's start with the simple move instructions. The first
are LDX and LDY, which load the X- and Y-registers the same
way that LDA loads the accumulator. Then there are STX and
STY, which store the X- and Y-registers the sa111e way that
STA stores the accumulator, There are also four connands for
transferring bytes between registers; these are TAX
(transfer A to X), TAY (transfer A to Y), TXA (transfer X to
A), and TYA (transfer Y to A).

Then there are four special instructions that you will
use very often. These are INX and INY, which increment (add
one to) the X- and Y-registers, and DEX and DEY, which
decrement (subtract one frm) the X-and Y-registers.

Finally, we have the CPX and CPY C!Xllands, which c011pare
X or Y with the operand of the instruction. These two
instructions operate in exactly the same way that the CNP
instruction works, except that they use the X- and
Y-registers instead of the accumulator.

What are these two registers used for? Well, they are
s011etimes used as temporary registers. If you are in the
middle of a lengthy c011putation, and you need to save a
value currently in the accumulator to make ro011 for
s011ething else, the X- and Y-registers are a handy place to
stuff values away for temporary storage. Progranners do
this all the time.

H<Mever, temporary storage is not the real purpose and
vaue arise frcn their utility as index registers. Index
registers go hand in hand with loops; the best way to show
you how they are used is to dump the whole schlleer at once
and then explain it.

So consider the foll<Ming problem: your program has to
deal with the possibility of user errors. Suppose you
require the user ty type in a file name for your program to
read, What happens if this file is not on the disk? You
have to put an error message on the screen that says, 'FILE
NOT IN DISK!' How do you print the message? Here's a saraple
bit of code that will do it:

LDX l<ENDHSG-ERRNSG-1>
LOOP1 LDA ERRNSG,X
STA SCREEN,X
SEC
SBC IK2D
DEX
BPL LOOP1
JMP ELSWHR
ERRNSG DB 'FILE NOT ON DISK1-'
ENDHSG DS 1

Let's take apart this code and explain it step by step.
First thing we do is load the X-register with the number of
characters (minutes one) in the message. The expression
<ENDMSG-ERRNSG-1) will calculate that length at assembly
time. This turns out to be 17 characters long. If we were
pedestrian about it we could have just written LDX 116, but
this way, if we decide to change the message we don't have
to remember to go back and change the LDX connand. Neat,
huh?

OK, so now we have a 16 in the X-register. Now the 65D2
comes to the next connand -- LDA, ERRNSG,X. This coinand
tells it to load the accumulator with the byte at (address
ERRNSG, indexed by X). What this means is as follows: the
65D2 will take the address ERRNSG and add the value of the
x-register to that address. It will then go to the address
so calculated and load the acc1111ulator with the contents of
that address. Since X contains a 16, the 6502 will go to
the 16th byte after the first byte in the table ERRNSG. If
you count characters, you will see that the 16th byte is the
exclamation point. So the 65D2 will load the ASCII code for
an exclamation point into the accumulator.

The next two instructions <SEC, SBC IK2D) are necessary
to correct for the Atari's nonstandard handling of ASCII
codes. They make sure that the exclamation will be printed
on the screen as an exclamation point.

The next instruction <STA SCREEN,X) stores the resit
indexed by X. The 65D2 will add the contents of X (still
16) to the address SCREEN. It will then store the contents
of the accU11ulator into that address. If that address is
part of screen RAH, then you will see an exclamation point
appear on the screen.

The next instruction that the 65D2 encounters is the DEX
instruction. This instruction subtracts one frcrn the
X-register, making it a 15,

Next, the 65D2 comes to the instruction BPL, LOOP 1. This
will branch if the N-flag is clear. The vaue of the N-flag
is affected by a DEX instruction. The value of bit D7 of
the result is transferred to the N-flag. Bit Dd7 of 15 is a
zero, hence the N-flag is clear, hence the 65D2 will indeed
take the branch, Note that it branches back up to LOOP 1,

Now it will repeat the process, only this time X contains
a 15, not a 16, It will therefore grab the 15th character,
an ASCII 'K', and store that to the screen position just

be!ore the ml•nlion point. Then ii will subtract~
form X to get a 14, and will continue the loop.

This process will continue, with the 6502 grabbing byt"-­
in reverse order form the table and storing them onto the
screen, until after the 6502 does the seroth byte, When X
contains a zero, and the 6502 executes a DEX, it obtains the
result $FF. This sets the N-flag, When the 6502 encounters
the BPL connand, it will NOT take the branch; instead, it
will skip the branch and go on to the JHP statement. The
loop is terminated.

In this one fragment of code you have seen two major
ideas: indexed addressing and looping. They are so closely
related that it is hard to talk about one without talking
about the other.

You can use indexed addressing with either the X-register
or the Y-register. You most connonly use indexed addressing
with the LDA and STA connands, but you can also use it with
many of the other 6502 connands: ADC, SBC, CHP, AND, ORA,
EOR, LSR, ROR, AOL, and ROL can all be used with indexed
addressing. Indexed addressing alllMs you to work with
tables or arrays of data.

There is one ugly catch: all of your arrays must be less
than 257 bytes long, because the index registers are only
eight bits wide. Host of the time this is not a serious
problem. HCMever, if you must address a larger table r
array, you can use indirect addressing. To do this, yo"'
calculate the address that you desire to access, store that
address in two contiguous bytes on page zero (ICM, then
high) -- we call these two bytes a pointer -- and then refer
to the pointer like so:

·LDA (POINTER>, Y

This instruction will take the address out of pointer, add
the value of Y to it, and load the accumulator with the
contents of the address so calculated, If POINTER contains
$4567 and Y contains a 2, then the 6502 will load the
acumulator with the contents of address $4569. You are still
restricted by the size of Y, but you can always go back and
change the POINTER if you need to span larger arrays, In
this case, you frequently just leave Y equal to zero and do
all of your indexing directly with changes to POINTER.

The last topic I will take up is termination techniques.
Every loop must s0111ehCM be terminated if you are to avoid
the problem of the Sorcerer's Apprentice. You will note
that the prograining example I gave used a rather odd
approach. I started at the end of the array and worked
backwards, Why not start at the beginning and work forwards?
It's slightly more efficient going backwards than forwards.
When you go forwards, you have to terminate the loop with:.._,.

INX
CPX 117
BNE LOOP!

Whereas when you go backwards, you need only use:

DEX
BPL LOOP!

~ Going backwards you save one instruction, HCMever, if
this confuses you, feel free to count forward; that works,
too, only it's a little less efficient.

There is also a problem on choosing whether to BNE or
BPL. BPL restricts you to a range of only 127 bytes, but
BNE, but index frm ERRNSG-1 and SCREEN-1 instead of ERRNSG
and SCREEN,

There are lots of other sneaky ways to ter11inate loops,
but they fall into advanced topics,

MC68000
MOTOROLA'S

16/32 BIT MICROPROCESSOR

by SIG-ATARI's Tim Barr

repri'"'tecl from ;YfACE
...lAttention all you hackers out there! Are you

anxious to get at the new ST Line of Atari
Computers? Here's a little background info
about the heart and soul of these new
computers. This artide was taken from the
SIG Atari section of CompuServe.]

The MC68000 is a 16-bit MPU with 17 general
purpose 32-bit registers, a 32-bit program
counter and a 16-bit status register. The
first eight GP registers (D0-D7) are used as
data registers. The next seven GP registers
CA0-A6> and the system stack pointers can be
utilized as address registers and pointers for
software use. The data registers can be used
for different data sizes. These sizes are:
BYTE (8-bit), WORD <16-bit), and LONG WORD
(32-bit) operations. The MPU has a 24-bit
address bus (actually it is 23-bit address line
and a HI BYTE and LOW BYTE select lines
which gives you 8 megawords or 16 megabytes
of memory) and a 16-bit data bus.

Five basic data types are supported by the
instruction set. These data types are: BITS,
'3CD DIGITS (4-bits>, BYTES (8-bits>, WORDS

--'<16-bits>, and LONG WORDS (32-bits). The
MPU has 14 address modes of six basic types:
REGISTER DIRECT, REGISTER INDIRECT,
ABSOLUTE, PROGRAM COUNTER RELATIVE,
IMMEDIATE, and IMPLIED. The surprising

thing about the 68000 is that it only has 56
instruction types and a total of only 88 actual
instructions. The actual 16-bit OP-CODE that
the system uses is a combination of an
instruction and an addressing mode, GP
register number, an OP-MODE, instruction
specific data, or any combination of the four.
<Instruction specific data is such information
as shift direction, branch conditions, operation
size, etc.> This provides you with over 1000
acutal instructions, but keeps the total number
of instructions small.

I will try to upload a list of the basic
instructions of the 68000 [to. CompuServe J,
but I wanted to mention a few of them here.
The MPU can perform add and subtract
functions on BCD digits in groups of two
digits. It can also multiply and divide binary
numbers in these formats: 32-bit / 16-bit =)

32-bit and 16-bit * 16-bit =) 32-bit. The
s"igned divide is the slowest instruction to
execute on the 68000. It takes 170 dock
cydes or 21.25 microsec. at a dock speed of 8
MHZ. This means that you could divide any
32-bit number in memory by any 16-bit number
in memory over 47,000 times in ONE SECOND!!

I hope that this has given you a general idea
of the power. of the processor that the new
Ataris will be using. If you are interested in
more information, I would like to suggest a
couple of books that are available. The first
is published by Howard K. Sams & Co. and is
called "68000: PRINCIPLES AND
PROGRAMMING" by Leo Scanion. You should
be able to order this book through the Howard
Sams section of CompuServe (GO SAM). The
second book I would like to recommend is
"M68000 PROGRAMMERS REFERENCE
MANUAL" available from:

Motorola Semiconductor Products Inc.
P.O. Box 20912
Phoenix, AZ 85036

Ask for document t: M68000UMCAD4).

St. Paul ATARI Camputtr Enthusiasts
2589 Fisk St.
Rostvillt,,.. 55113

SPAC.E lfb_-/;;"j P/Q.ce.

Fa.lu.._ Htifts Co....,, Q ... ·b~1"

d-011 LQ.~fQ.."'b~ ... A"e.. W.

J. P. Scheib
3944 24th Av. S.
Minneapolis, Mn.

Tl.e_ rol;c.e._ ;. +\,..c.
Je.tl's arc-c.s, tt.
\,\.13 u Oil ... -~i"-5.

55406

